Problem 4: Water Bottles 4+3=7 Point(s)

Problem ID: bottles Rank: 2+3

Introduction

Berkeley students living in some parts of the Foothill residential complex source most potable water from a communal water dispenser. This problem is inspired by an everyday technique we use to reduce the awkwardness of delaying people behind us in line! The real dispenser outputs 2 liters per minute, but we'll say 1 per minute for this problem to make things simpler.

Problem Statement

N students numbered 1, ..., **N** are lined up at a water dispenser that dispenses water at a constant rate of 1 liter per minute. The *i*th student has an empty bottle with capacity C_i liters that they begin to fill immediately after the previous student has finished (formally, the *i*th student begins refilling when all *j*th students for which j < i finish refilling).

We define the *wait time* of a student as the **total** time they have to wait until their bottle **finishes** refilling. The students ask you to reorder the line into a new permutation $(a_1, ..., a_N)$ of the students' numbers such that the students' total wait time is minimized.

For the bonus test set only, the students also require a tiebreaker: If multiple permutations result in the minimum total wait time, choose any permutation that minimizes the number of students moved to a new position. Formally, minimize the number of indices *i* for which $a_i \neq i$. If there are multiple permutations that accomplish this, you may choose any.

Input Format

The first line of the input contains an integer **T**, denoting the number of test cases that follow. For each test case:

- The first line contains a positive integer N denoting the number of students in line.
- The second line contains a sequence of **N** positive integers **C**₁, ..., **C**_N, denoting the bottle capacities in liters.

Output Format

For each test case, output the following two lines:

- On the first line, output the minimum total wait time in minutes.
- On the second line, output **N** integers $a_1, ..., a_N$ ($1 \le a_i \le N$) where a_i is the new index of the i^{th} student from the front of the original line. If there are multiple permutations that satisfy all criteria, you may output any.

Constraints

 $1 \le T \le 100$

Main Test Set

 $1 \le \mathbf{N} \le 10^3$

The sum of N across all test cases in a test file does not exceed 10^3 .

 $1 \le \mathbf{C}_i \le 10^3$

All capacities C_i are distinct.

There is guaranteed to exist exactly one optimal permutation for each test case.

Bonus Test Set

 $1 \le \mathbf{N} \le 10^5$

The sum of N across all test cases in a test file does not exceed 10^5 .

 $1 \le \mathbf{C}_i \le 10^9$

The capacities C_i are not guaranteed to be distinct.

Sample Test Cases

Main Sample Input	<u>Download</u>	Main Sample Output	<u>Download</u>
1 3 5 1 2		12 2 3 1	

Main Sample Explanations

The optimal permutation rearranges the line into the order (2, 3, 1).

- 1. Student 2 is first in the new line. They have a 1 L bottle and spend 1 minute refilling it.
- 2. Student 3 is second. They have to wait 1 minute and then spend 2 minutes refilling their own bottle, finishing after 3 minutes.
- 3. Student 1 is third. They have to wait 3 minutes and then spend 5 minutes refilling their own bottle, finishing after 8 minutes.

The total wait time is (1 + 3 + 8) min = 12 minutes, and it can be shown that no other permutation results in a total less than or equal to than 12 minutes.

Bonus Sample Input	<u>Download</u>	Bonus Sample Output	<u>Download</u>
2 3		7 3 2 1	
2 1 1		13	
4 2 2 1 1		3 4 1 2	
		Note that this is one of many possible	

Note that this is one of many possible correct outputs. If there are multiple solutions, you may output any of them.

Bonus Sample Explanations

For test case #1, the permutations (2, 3, 1) and (3, 2, 1) both achieve the minimum total wait time of 7 minutes. However, (2, 3, 1) moves three students while (3, 2, 1) moves only two, so (3, 2, 1) is preferred.

For test case #2, the permutation (3, 4, 1, 2) moves all students and results in a total wait time of 13 minutes, which can be shown to be the minimum. There are also three other permutations that result in a total wait time of 13 minutes and move all students: (3, 4, 2, 1), (4, 3, 1, 2), and (4, 3, 2, 1). The tiebreaker is thus inconclusive—any of these permutations are acceptable.