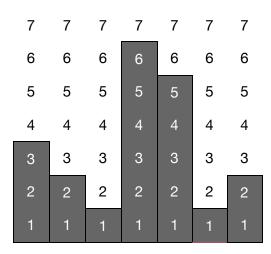
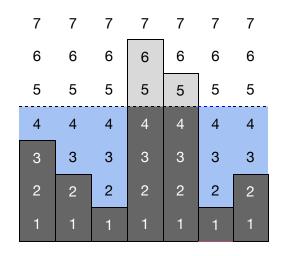
Problem 5: Better Call McKirby 3+5 Points


Problem ID: bridge Rank: 2+2

Introduction


Super Smash Bros is coming to Saffron City! Waluigi Group Global Holding Company has been contracted by Saffron City Sports Authority to construct a city skyline for the fights. He gets off to a blazing start, the first two buildings are up with only a few unimportant casualties, but after a crackdown from OSHA, Waluigi is forced to implement basic safety standards for all his "workers." "Waaaaah"! They've legislated that he must place a safety net that will catch any "workers" falling from a dangerous height. In order to minimize costs and maximize profits, Waluigi has called upon McKirby consulting, who have sent you to help.

Problem Statement

Given a row of adjacent buildings with heights S_1 , S_2 , ... S_N , choose an integer height to construct a bridge across them that minimizes *danger* without exceeding a total construction *cost* of **B**. *Danger* is defined as the cumulative difference in heights between the bridge and the top of each building below it. The *cost* to build the bridge is defined as the cumulative difference in heights between the bridge and the top of each building below it. The *cost* to build the top of each building above it. For example, if N = 7 and S = [3, 2, 1, 6, 5, 1, 2], the buildings look like this:

Building the bridge at a height of 4 incurs 11 *danger* at 3 *cost*, as pictured by the blue and light gray, respectively.

If there are multiple bridge heights that minimize danger without exceeding a cost of **B**, output the one that minimizes the cost.

Note: Templates are available for this problem—and **all other problems in this contest**—in Python, Java, and C++! Find them in the <u>contest.zip provided at the start of the contest</u>. Templates handle input and output for you, so you can just fill out a single function!

Input Format

The first line of the input contains a single integer \mathbf{T} denoting the number of test cases that follow. For each test case:

- The first line contains two space-separated integers **B N** denoting the maximum cost allowed to build the bridge and the number of buildings, respectively.
- The second line contains N space-separated integers $S_1 S_2 \dots S_N$ denoting the height of each building.

Output Format

For each test case, output a single integer corresponding to the height you choose to build the bridge.

Constraints

Time limit: **1 second** Memory limit: **256 MB**

Main Test Set

 $1 \le \mathbf{T} \le 10$ $1 \le \mathbf{B} \le 10^4$ $1 \le \mathbf{N} \le 100$ $0 \le \mathbf{S}_i \le 100 \text{ for all } 1 \le i \le \mathbf{N}$

Bonus Test Set 1

 $1 \le \mathbf{T} \le 10$ $1 \le \mathbf{B} \le 10^{18}$ $1 \le \mathbf{N} \le 10^{5}$ $0 \le \mathbf{S}_i \le 10^{13} \text{ for all } 1 \le i \le \mathbf{N}$

Sample Test Case

Sample Input	Download	Sample Output	Download
3		4	
8 5		7	
2 6 10 1 2		20	
13 10			
5 8 9 8 9 8 7 4 1 7			
44 12			
9 21 4 31 10 20 31 28 16	29 9 11		

Sample Explanations

For test case #1, the buildings look like this:

11	11	11	11	11
10	10	10	10	10
9	9	9	9	9
8	8	8	8	8
7	7	7	7	7
6	6	6	6	6
5	5	5	5	5
4	4	4	4	4
3	3	3	3	3
2	2	2	2	2
1	1	1	1	1

Some possible bridge heights with their associated dangers and costs are outlined below:

Η	Danger	Cost			
0	0	21			
1	0	16			
2	1	12			
3	4	10			
4	7	8			
5	10	6			
6	13	4			
7	17	3			
8	21	2			
9	25	1			
10	29	0			
11	34	0			

The cost to build the bridge cannot exceed $\mathbf{B} = 8$. Under this constraint, the lowest danger can be incurred by building the bridge at height 4 (7 danger with 8 cost).

For test case #2, building a bridge at height 7 yields the minimum danger of 11 at 7 cost. No other bridge with cost less than $\mathbf{B} = 13$ incurs less danger.