
 CALICO Spring '22 Online
 May 21st, 2022
 180 Minutes
 11+3 Questions
 Problem Packet by CALICO

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 1 of 36

 Table of Contents

 Problem Name Page Points

 Problem 1: RGB for You and Me 3 3

 Problem 2: What’s Up? 6 3

 Problem 3: Not Quite Fibonacci 9 3+2

 Problem 4: Wordsearch 12 3+3

 Problem 5: i trusted you 16 6

 Problem 6: Fractals Against Programmability 19 7

 Problem 7: Put a Knife In It 22 8+6

 Problem 8: C1000001 25 10

 Problem 9: Wordsnake 28 12

 Problem 10: Taxi Time 31 14

 Problem 11: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!0 34 20

 Total Possible Points 100

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 2 of 36

 Problem 1: RGB for You and Me
 3 Points

 Problem ID: rgb

 Rank: 1

 Introduction

 A Bayer filter is a type of color filter array, or CFA. It represents the pattern of red, green, and

 blue color filters on a grid of photosensors, and is most commonly used in the image sensors

 of digital cameras. The filter is unique in the way that it uses twice as many green sensors as

 red or blue sensors.

 Problem Statement

 Your task is to create a program that will output a Bayer filter with R rows and C columns.

 A Bayer filter is defined as follows:

 ● Red, green, and blue color filters should be represented by the characters R, G, and B

 respectively

 ● The top-left corner of the filter should contain a blue color filter

 ● Every slot adjacent to a blue or red color filter (excluding diagonals) should contain a green

 color filter

 ● Every slot diagonal to a blue color filter should contain a red color filter, and vice versa

 Here’s an image of a 16x16 Bayer filter for reference:

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 3 of 36

https://en.wikipedia.org/wiki/Bayer_filter

 Input Format

 The first line of the input contains a positive integer T denoting the number of test cases that

 follow. For each test case:

 ● A single line consists of two integers R C separated by an x where:

 ○ The positive integer value R denotes the number of rows the Bayer filter must have

 ○ The positive integer value C denotes the number of columns the Bayer filter must have

 Output Format

 For each test case, your program should output a Bayer filter with the dimensions R and C .
 Each test case output should be separated by a blank line.

 Problem Constraints

 1 ≤ T ≤ 100

 1 ≤ R , C ≤ 100

 The sum of R × C across all test cases does not exceed 10 5 .

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 4 of 36

 Sample Test Cases

 Sample Input

 3
 1x8
 2x2
 6x5

 Sample Output

 BGBGBGBG

 BG
 GR

 BGBGB
 GRGRG
 BGBGB
 GRGRG
 BGBGB
 GRGRG

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 5 of 36

 Problem 2: What’s Up?
 3 Point(s)

 Problem ID: updog

 Rank: 1

 Introduction

 Does it smell like updog in here? You never know, but you don’t want to be caught off guard

 either! You’re sick of getting tricked by your peers and their schemes, and you never want to

 hear the cursed phrase "Nothing much, what’s up with you" ever again.

 Problem Statement

 Your task is to respond accordingly to an input statement in the following format:
 it smells like <KEYWORD(S)> in here

 ● If the first keyword in <KEYWORD(S)> begin with up , your program should output what's
 that

 ● Otherwise, your program should output what's <KEYWORD(S)> while maintaining its

 original capitalization and spacing

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 6 of 36

 Input Format

 The first line of the input contains a positive integer T denoting the number of test cases that

 follow. Each test case contains a single line in the following format:
 it smells like <KEYWORD(S)> in here

 Output Format

 For each test case, your program should output a single line containing the correct response to

 the input statement.

 Problem Constraints

 1 ≤ T ≤ 100

 The length of the input message will not exceed 100.

 <KEYWORD(S)> is not an empty string.

 <KEYWORD(S)> may contain numbers, special characters, or spaces.

 The input will not contain consecutive spaces.

 All inputs will be entirely in lowercase.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 7 of 36

 Sample Test Cases

 Sample Input

 6
 it smells like updog in here
 it smells like fish in here
 it smells like upholstery in here
 it smells like in here in here
 it smells like pneumonoultramicroscopicsilicovolcanoconiosis in here
 it smells like calico spring '22 online? im so glad you asked. in here

 Sample Output

 what's that
 what's fish
 what's that
 what's in here
 what's pneumonoultramicroscopicsilicovolcanoconiosis
 what's calico spring '22 online? im so glad you asked.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 8 of 36

 Problem 3: Not Quite Fibonacci
 3+2 Points

 Problem ID: trib

 Rank: 1+2

 Introduction

 While listening to Mr. Recursion talk about Fibonacci numbers for the 11235813213455th time,

 you decided to invent a number sequence of your own! Beginning with -1, 0, and 1, you

 determine the next number by summing the previous three numbers in the sequence instead of

 the previous two. These are the Tribonacci numbers!

 Problem Statement

 Find the N th Tribonacci number, T N .

 The -1st, 0th, and 1st Tribonacci numbers are defined to be -1, 0, and 1 respectively. All

 Tribonacci numbers are equal to the sum of the three Tribonacci numbers before it. In other

 words:

 T -1 = -1, T 0 = 0, T 1 = 1

 T K = T K-1 + T K-2 + T K-3 where K can be any integer

 The first few Tribonacci numbers are as follows:

 T -1 T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9

 -1 0 1 0 1 2 3 6 11 20 37

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 9 of 36

 Input Format

 The first line of the input contains a positive integer T denoting the number of test cases that

 follow. Each test case is described in a single line containing an integer N denoting the

 Tribonacci number you must find, T N .

 Output Format

 For each test case, output a single line containing an integer denoting the N th Tribonacci

 number, T N .

 Problem Constraints

 1 ≤ T ≤ 100

 abs(T i), the absolute value of the i th Tribonacci number, is guaranteed to be less than 10 9 for all

 values of -60 ≤ i ≤ 30.

 Main Test Set

 0 ≤ N ≤ 30

 Bonus Test Set

 -60 ≤ N ≤ 30

 To find Tribonacci numbers of negative N , algebraically rearrange the formula to solve for T K-3 .

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 10 of 36

 Sample Test Cases

 Sample Input

 6
 0
 1
 2
 5
 10
 27

 Sample Output

 0
 1
 0
 3
 68
 2145013

 Sample Explanations

 For test cases #1 and #2, this is because the 0th and 1st Tribonacci numbers are defined to be

 0 and 1 respectively.

 For test case #3, using the formula with K = 2, we have T 2 = T 1 + T 0 + T -1 = 1 + 0 + -1 = 0

 For test case #4, using the formula with K = 5, we have T 5 = T 4 + T 3 + T 2 = 2 + 1 + 0 = 3

 For test case #5, using the formula with K = 10. we have T 10 = T 9 + T 8 + T 7 = 37 + 20 + 11 = 68

 Sample Input

 4
 -2
 -3
 -4
 -50

 Sample Output

 2
 -1
 -2
 -3792150

 Sample Explanations

 Negative Tribonacci numbers are found by rearranging the Tribonacci formula to solve for T K-3 .

 Note that negative N values will only appear in the bonus test set.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 11 of 36

 Problem 4: Wordsearch
 3+3 Point(s)

 Problem ID: wordsearch

 Rank: 1+2

 Note

 This problem has a challenge version, Problem X: Wordsnake! Both problems are exactly the

 same except for the additional constraints in the problem statement. However, solutions to one

 may not necessarily also be valid solutions for the other.

 Introduction

 To prepare for the upcoming SAT, your English teacher Mrs. Boomer assigned you vocabulary

 wordsearches of all things to do for homework! However, you have way more important things

 to do with your life than boring wordsearches, so you take a picture of the puzzle and run OCR

 on it. Then, you decide to write a program to search the words for you instead!

 Problem Statement

 Given the hidden word as an uppercase string S and the wordsearch puzzle as an uppercase

 letter grid with R rows and C columns, find the hidden word in the puzzle and output a copy of

 the puzzle with all letters except the letters of the hidden word replaced with # .

 The hidden word in the grid is a sequence of adjacent letters with the additional constraints:

 ● For the main test set, the word will be hidden horizontally from left to right

 ● For the bonus test set, the word can be hidden horizontally or vertically, and can also be

 reversed

 ○ In other words, it can be hidden horizontally rightward, horizontally leftward, vertically

 downward, or vertically upward

 Note that these are not the only constraints. See the constraints section below for more

 constraints.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 12 of 36

https://en.wikipedia.org/wiki/Optical_character_recognition

 Input Format

 The first line of input contains a positive integer T denoting the number of test cases that

 follow. For each test case:

 ● The first line contains a single string S denoting the hidden word

 ● The second line contains two space separated positive integers R and C denoting the

 number of rows and columns of the wordsearch puzzle

 ● The next R lines contain C uppercase letters each, denoting the puzzle itself

 ● The final line is blank to separate individual test cases

 Output Format

 For each test case, output the following:

 ● The first R lines should contain C symbols in each line denoting the solved wordsearch

 ○ All letters not part of the hidden word should be replaced with a pound sign #

 ● The final line should be blank to separate individual test cases

 Constraints

 1 ≤ |S| ≤ 26

 In other words, the length of S does not exceed 26.

 1 ≤ R , C ≤ 300

 The sum of R × C across all test cases does not exceed 10 5 .

 S only contains letters from the uppercase alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ .

 S contains at most one of each letter.

 S may not be a real English word.

 There will be exactly one complete instance of the hidden word in the entire puzzle.

 Main Test Set

 The word in the puzzle will be hidden horizontally.

 Bonus Test Set

 The word in the puzzle may be hidden horizontally or vertically, and may also be reversed.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 13 of 36

 Sample Test Cases

 Sample Input

 2
 UNCOPYRIGHTABLE
 6 30
 UNCOPYRIGHTABLYVNWVMHJMYYPUPVI
 OVVJOYPOIYNRTLYVPVXZVKVXCCNFTC
 BEKDGVCZAFVQSGOLBEDYEYCCGAMBHD
 RLQDONTDODRUGSKIDSQXRLQGFFQFEK
 NCJRUNCOPYRIGHTABLEZTPHSWWRUGJ
 AQZJOYEWTBUCBERKELEYCALICOLCKC

 COPYRIGHTABLE
 1 13
 COPYRIGHTABLE

 Sample Output

 ##############################
 ##############################
 ##############################
 ##############################
 ####UNCOPYRIGHTABLE###########
 ##############################

 COPYRIGHTABLE

 Sample Explanations

 For test case 1, we have a puzzle with 6 rows and 30 columns. The word UNCOPYRIGHTABLE

 can be found starting from row 5 column 5 going horizontally rightwards. Note that the

 incomplete word UNCOPYRIGHTABL can be found at row 1 column 1 but since it isn’t the full

 word, we ignore it.

 For test case 2, the entire puzzle consists of the word COPYRIGHTABLE and no other letters, so

 no pound signs # are added.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 14 of 36

 Sample Input

 2
 SECRET
 6 3
 OBS
 QNE
 LAC
 USR
 BBE
 ILT

 AMOGUS
 7 10
 IEELYLTMDA
 OXSUGOMAZJ
 TKLRFDNCRO
 AQTCLPUFPE
 HELPMEIMXX
 STUCKINAXX
 WORDSEARCH

 Sample Output

 ##S
 ##E
 ##C
 ##R
 ##E
 ##T

 ##########
 ##SUGOMA##
 ##########
 ##########
 ##########
 ##########
 ##########

 Sample Explanations

 For test case 1, the word SECRET can be found starting from row 1 column 3 going vertically

 downwards. Note that vertical words only show up in the bonus test set, not the main test set.

 For test case 2, the word AMOGUS can be found starting from row 2 column 8 going horizontally

 leftwards in reverse. Note that reverse words only show up in the bonus test set, not the main

 test set.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 15 of 36

 Problem 5: i trusted you
 6 Point(s)

 Problem ID: amogus

 Rank: 2

 Introduction

 Happy dated reference day! Today we’ll be talking about the hit 2020 deception game Among

 Us, the family-friendly multiplayer game in which you must complete fun tasks with your

 crewmates before time runs out—but beware, there are imposters among us!!! You and your

 friend are both imposters, so you must work together in order to deceive your “friends” and win

 the game. Be careful; if either of you draws too much attention (I’m not saying the word), you

 might get voted out of the game! Thanks to good old-fashioned election fraud, however, you’ve

 gotten a sneak peak at everybody’s else’s votes.

 Problem Statement

 Your task is to create a program that will output you and your teammate’s votes (imposters)

 given the votes of N other players (crewmates). Each player is identified using a number

 counting upwards from 1; you and your partner are assigned player numbers N + 1 and N + 2 ,

 respectively. The i th player’s vote S i will denote the number of the player they want eliminated.

 For each test case, your program should output you and your teammate’s votes according to

 the following criteria:

 ● If either imposter currently holds the most votes (without tying with any crewmate), you

 should both vote for the crewmate with the next most votes

 ○ However, if an imposter is guaranteed to hold the most votes (without tying with any

 other crewmate), you should both vote SKIP

 ● Otherwise, if any imposter is tied for the most votes with any crewmate, you should vote for

 the crewmate, and your teammate SKIP (regardless of who’s tied with the crewmate)

 ● Otherwise, you should both vote for the crewmate with the least votes

 ● If multiple players are tied for any criteria, vote for the player with the lowest player number

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 16 of 36

 Input Format

 The first line of the input will contain a positive integer T denoting the number of test cases that

 follow. Each test case will have the following input:

 ● A first line containing the single positive integer N denoting the number of other players

 (crewmates) present in the game.

 ● A second line containing the space-separated sequence of N positive integers S 1..N ,

 denoting the player number voted for by each player.

 ● A blank line separating individual test cases.

 Output Format

 Your output should be created in the following format:

 ● A single line containing your vote and your teammate’s vote, separated by a space. A vote

 is represented by the player’s number, or the word SKIP

 Problem Constraints

 1 ≤ T ≤ 100

 1 ≤ N ≤ 1000

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 17 of 36

 Sample Test Cases

 Sample Input

 4
 5
 6 1 6 6 6

 3
 5 1 2

 7
 2 9 8 8 9 9 8

 4
 2 1 2 2

 Sample Output

 SKIP SKIP
 1 SKIP
 2 2
 3 3

 Sample Explanations

 For Test Case #1:

 You (Player 6) are guaranteed to lose, so both you and your teammate should vote SKIP

 For Test Case #2:

 Your partner (Player 5), Player 1, and Player 2 are tied for the most votes, so you should vote

 for Player 1 while your partner votes SKIP

 For Test Case #3:

 You (Player 8) and your partner (Player 9) are tied for the most votes, but you can create a tie

 by both voting for Player 2.

 For Test Case #4:

 Player 2 currently has the most votes, so you vote for Player 3 (since both Player 3 and Player

 4 have no votes).

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 18 of 36

 Problem 6: Fractals Against Programmability
 7 Point(s)

 Problem ID: fractal

 Rank: 2

 Introduction

 It turns out that building a real house of cards with real cards bought with real money is too

 expensive, and building a plain digital house of cards is not very impressive, so you decide to

 build a digital house of cards that’s cool and recursive instead!

 Problem Statement

 Output a fractal house of cards with N layers.

 The simplest fractal house of cards with 1 layer consists of just two cards leaning on each

 other in a single line, drawn with a forward slash / and a backslash \ :

 /\

 To construct a fractal house of cards with k layers where k is a power of 2, build three fractal

 houses of cards with k / 2 layers in an equilateral triangle pattern by inserting spaces so that

 each house is aligned correctly. For example, here is a fractal house of cards with 8 layers:

 /\
 /\/\
 /\ /\
 /\/\/\/\
 /\ /\
 /\/\ /\/\
 /\ /\ /\ /\
 /\/\/\/\/\/\/\/\

 See the sample test cases below for more examples.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 19 of 36

 Input Format

 The first line of input contains a positive integer T denoting the number of test cases that

 follow. Each test case consists of a single line containing a positive integer N denoting the

 number of layers in the fractal house of cards you're trying to build.

 Output Format

 For each test case, output the following:

 ● The first N lines should contain the fractal house of cards

 ○ Each line should contain the forward slashes / , backslashes \ , and spaces for each

 layer

 ○ The house is allowed to have trailing spaces on the right side of each layer

 ● The final line should be blank to separate individual test cases

 Problem Constraints

 1 ≤ T ≤ 100

 1 ≤ N ≤ 256

 N is a power of 2.

 The sum of N 2 across all test cases in an input does not exceed 10 5 .

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 20 of 36

 Sample Test Cases

 Sample Input

 5
 1
 2
 4
 8
 16

 Sample Output

 /\

 /\
 /\/\

 /\
 /\/\
 /\ /\

 /\/\/\/\

 /\
 /\/\
 /\ /\

 /\/\/\/\
 /\ /\
 /\/\ /\/\
 /\ /\ /\ /\

 /\/\/\/\/\/\/\/\

 /\
 /\/\
 /\ /\

 /\/\/\/\
 /\ /\
 /\/\ /\/\
 /\ /\ /\ /\

 /\/\/\/\/\/\/\/\
 /\ /\
 /\/\ /\/\
 /\ /\ /\ /\

 /\/\/\/\ /\/\/\/\
 /\ /\ /\ /\
 /\/\ /\/\ /\/\ /\/\
 /\ /\ /\ /\ /\ /\ /\ /\

 /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 21 of 36

 Problem 7: Put a Knife In It
 8+6 Point(s)

 Problem ID: cipher

 Rank: 2+3

 Introduction

 Take a stab—or 23 —at this problem! Caesar may be remembered in the modern era for his

 salad dressing, but there is something else named after him: the Caesar cipher! In this problem,

 you will be working with basic cryptography to test your programming skills.

 Problem Statement

 Your task is to recover the original message from a ciphertext given a series of N ciphers used

 to encode it.

 The ciphers encrypt the original message in series, with the output from one cipher becoming

 the input to the next. Each cipher can be any one of the following:

 ● A Caesar cipher with an offset x , where each alphabetic character in a string is shifted

 forward x letters in the alphabet (if x = 2, then "a" would become "c"). Non-alphabetic

 characters are ignored

 ○ A negative x symbolizes shifting each letter backwards instead of forwards. If the end of

 the alphabet is reached, you loop to the beginning of the alphabet, and vice versa.

 ● An Atbash cipher, where each alphabetic character in a string is flipped to its counterpart

 on the opposite end of the alphabet ("a" becomes "z" and "y" becomes "b").

 Non-alphabetic characters are ignored

 ● A Reverse cipher, where the order of characters in a string is reversed ("atlanta" becomes

 "atnalta" and "racecar" becomes "racecar")

 For your convenience, here are the lowercase letters of the English alphabet in order:
 abcdefghijklmnopqrstuvwxyz

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 22 of 36

https://en.wikipedia.org/wiki/Assassination_of_Julius_Caesar

 Input Format

 The first line of the input contains a positive integer T denoting the number of test cases that

 follow. For each test case:

 ● The first line contains the ciphertext to be decrypted

 ● The second line contains a positive integer N denoting the number of ciphers used to

 encrypt the message

 ● The third line contains a space-separated sequence of N ciphers. The ciphers represent the

 order in which the original message was encoded, from left to right. The first cipher is on

 the very left, and the last cipher is on the very right. Each cipher can be any one of the

 following:

 ○ Caesar ciphers, represented by a C immediately followed by an integer x , representing a

 Caesar cipher with an offset of x
 ○ Atbash ciphers, represented by an A

 ○ Reverse ciphers, represented by an R

 ● The final line is blank to separate individual test cases

 Output Format

 For each test case, output a single line containing the original message by decoding the given

 ciphertext.

 Problem Constraints

 1 ≤ N ≤ 10 3

 -26 ≤ x ≤ 26 for all Caesar ciphers.

 The ciphertext will be non-empty. All letters in the ciphertexts will be entirely in lowercase.

 The ciphertext may contain numbers, special characters, or spaces.

 Main Test Set

 1 ≤ T ≤ 100

 The length of the ciphertext will not exceed 100.

 Bonus Test Set

 1 ≤ T ≤ 10

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 23 of 36

 The length of the ciphertext will not exceed 10 5 .

 Sample Test Cases

 Sample Input

 4
 lipps asvph
 1
 C4

 iatcqsa lq cetwcq mpnwry 22 qrtwra!
 2
 C-5 A

 hw'x p ebuler mpr wbmpr.
 2
 A C-10

 !wvhwqrf hkw ir wvhu hkw qr nfxo grrj
 3
 C14 R C-11

 Sample Output

 hello world
 welcome to calico spring 22 online!
 it's a lovely day today.
 good luck on the rest of the contest!

 Sample Explanations

 For test case #2:

 The message iatcqsa lq cetwcq mpnwry 22 qrtwra! was first encrypted using a

 Caesar cipher shifting each character backwards 5 positions, followed by an Atbash cipher.

 Undoing these ciphers will decode the message welcome to calico spring 22
 online!

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 24 of 36

 Problem 8: C1000001
 10 Points

 Problem ID: piano

 Rank: 3

 Introduction

 Billy the billion-tentacled octopus wants to perform some profound pieces at his upcoming

 piano recital! He’ll be showcasing his custom built piano with a few “engineering” quirks.

 Billy’s piano has 1000000 octaves with 12000004 keys numbered from 1 to 12000004! In

 scientific pitch notation , key 1 plays A0, 2 plays A#0, 3 plays B0, 4 plays C1, …, 40 plays C4

 (middle C), …, 49 plays A4 (A440), …, and 12000004 plays C1000001 (which has such a high

 frequency it deatomizes air particles!).

 With a billion tentacles, Billy can press as many notes as he needs simultaneously. Although

 the piano is long, he can instantly move to different parts of the piano when he isn’t pressing

 down any keys. However, at any given point in time, he has limited reach! Help Billy determine

 what piece to play by finding the reach needed to play each piece!

 Problem Statement

 Given a piece of music with N timesteps involving a sequence of actions A 1 , A 2 , … , A N and

 keys K 1 , K 2 , … , K N , where at timestep i , action A i is taken with key K i , find the reach needed

 to play the entire piece.

 An action can involve either pressing or releasing a key.

 The reach needed at a given timestep is equal to the maximum difference between any two

 currently pressed key numbers. The reach needed to play the entire piece is equal to the

 maximum reach needed at any single timestep.

 All keys begin in the released state, and are pressed/released in the order of their respective

 timestep.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 25 of 36

https://en.wikipedia.org/wiki/Scientific_pitch_notation

 Input Format

 The first line of the input contains a positive integer T denoting the number of test cases that

 follow. For each test case:

 ● The first line contains an integer N denoting the number of timesteps in the piece

 ● The next N lines contain 2 space-separated values each A i K i , denoting actions and keys

 in the order they are played

 ○ The single character A i denotes the action to perform on key K i , and is one of the

 following:

 ■ P , denoting K i is pressed at timestep i
 ■ R , denoting K i is released at timestep i

 ○ The integer K i denotes the key to take action A i with

 ● The final line is blank to separate individual test cases

 Output Format

 For each test case, output a single line containing a positive integer denoting the reach needed

 to play the entire piece.

 Problem Constraints

 1 ≤ T ≤ 100

 2 ≤ N ≤ 10 5

 N is even.

 The sum of N across all test cases in an input does not exceed 10 5 .

 1 ≤ K i ≤ 12 × 10 6 + 4 = 12000004

 A i ∈ { P , R }

 The piece as a whole is additionally subject to the following constraints:

 ● All keys begin in the released state

 ● Every pressed key will be released by the end of the piece

 ● The same key may be pressed and released multiple times

 ● If a key is pressed, it will not be pressed again until it is released and vice versa

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 26 of 36

 Sample Test Cases

 Sample Input

 2
 4
 P 40
 R 40
 P 40
 R 40

 10
 P 47
 P 32
 P 20
 R 47
 P 44
 R 44
 P 51
 R 51
 R 32
 R 20

 Sample Output

 0
 31

 Sample Explanations

 For test case 1, only one note is ever played at any given time. The maximum and minimum

 key number currently pressed is the same, so their difference is zero.

 For test case 2, we have the following keys pressed and reach needed at each timestep:

 Timestep Keys Reach

 1 47 0 (47 - 47)

 2 47, 32 15 (47 - 32)

 3 47, 32, 20 27 (47 - 20)

 4 32, 20 12 (32 - 20)

 5 32, 20, 44 24 (44 - 20)

 Timestep Keys Reach

 6 32, 20 12 (32 - 20)

 7 32, 20, 51 31 (51 - 20)

 8 32, 20 12 (32 - 20)

 9 20 0 (20 - 20)

 10 (None) 0 (No keys)

 The max reach at any timestep is 31, which occurs at step 7 while pressing keys 51, 32, and

 20. The reach needed here is the largest distance between any two of the keys, 51 - 20 = 31.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 27 of 36

 Problem 9: Wordsnake
 12 Point(s)

 Problem ID: wordsnake

 Rank: 3

 Note

 This problem has a challenge version, Problem X: Wordsnake! Both problems are exactly the

 same except for the additional constraints in the problem statement. However, solutions to one

 may not necessarily also be valid solutions for the other.

 Introduction

 You turn in your assignment only to find Mrs. Boomer was just getting started! For tonight’s

 homework, she invented a harder version of Wordsearch, where the words themselves can

 bend ! She calls these puzzles Wordsnakes .

 You run OCR on the puzzle again. But this time, you’ll need to write a smarter program to

 search for words with bends!

 Problem Statement

 Given the hidden word as an uppercase string S and the wordsnake puzzle as an uppercase

 letter grid of R rows and C columns, find the hidden word in the puzzle and output a copy of

 the puzzle with all letters except the letters of the hidden word replaced with # .

 The hidden word in the grid is a sequence of adjacent letters with the additional constraints:

 ● The hidden word can start at any location, and subsequent letters can follow in any of the 4

 adjacent letters (up, down, left, right) regardless of where previous letters in the word are

 ○ This means the word can contain bends, but not self-intersections!

 ● The word may contain any number of bends

 Note that these are not the only constraints. See the constraints section below for more

 constraints.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 28 of 36

 Input Format

 The first line of input contains a positive integer T denoting the number of test cases that

 follow. For each test case:

 ● The first line contains a single string S denoting the hidden word

 ● The second line contains two space separated positive integers R and C denoting the

 number of rows and columns of the wordsnake puzzle

 ● The next R lines contain C uppercase letters each denoting the letters of the wordsnake

 puzzle itself

 ● The final line is blank to separate individual test cases

 Output Format

 For each test case, output the following:

 ● The first R lines should contain C symbols in each line denoting the solved wordsnake

 ○ All letters not part of the hidden word should be replaced with a pound sign #

 ● The final line should be blank to separate individual test cases

 Constraints

 1 ≤ |S| ≤ 26

 In other words, the length of S does not exceed 26.

 1 ≤ R , C ≤ 300

 The sum of R × C across all test cases does not exceed 10 5 .

 S contains only letters from the uppercase alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ .

 S contains at most one of each letter.

 S may not be a real English word.

 There will be exactly one complete instance of the hidden word in the entire puzzle.

 The hidden word can start at any location, and subsequent letters can follow in any of the 4

 adjacent letters (up, down, left, right) regardless of where previous letters are. This means the

 word can contain bends, but not self-intersections!

 The word may contain any number of bends.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 29 of 36

 Sample Test Cases

 Sample Input

 3
 ATMOSPHERIC
 7 9
 RWZMQVRLI
 EOYOMMCMC
 OAJHJHFPV
 XTQROVWBW
 MMSIALHSZ
 ZOSPHERIC
 VOTPTSDHC

 AMOGUS
 7 10
 IEELYLTMDA
 OXSUGOMAZJ
 TKLRFDNCRO
 AQTCLPUFPE
 HELPMEIMXX
 STUCKINAXX
 WORDSNAKEX

 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 4 13
 MTGHIJPCJRSTU
 YAFMLKTAYQPXV
 QBEGZLMNOPSLW
 CCDZVYOSNUZYX

 Sample Output

 #########
 #########
 #A#######
 #T#######
 #M#######
 #OSPHERIC
 #########

 ##########
 ##SUGOMA##
 ##########
 ##########
 ##########
 ##########
 ##########
 ##########

 ##GHIJ###RSTU
 #AF##K###Q##V
 #BE##LMNOP##W
 #CD#######ZYX

 Sample Explanations

 For test case 1, we are given a puzzle with 7 rows and 9 columns. The word ATMOSPHERIC can

 be found starting from row 3 column 2 going vertically downward until row 6 column 2. Then, it

 bends to the right, continuing rightward until row 6 column 8.

 For test case 2, the word AMOGUS can be found starting from row 2 column 8 going horizontal

 in reverse from right to left. This is an example of a valid test case whose solution contains no

 bends.

 For test case 3, the word ABCDEFGHIJKLMNOPQRSTUVWXYZ can be found starting from row 2

 column 2. Then it goes crazy all over the place, making a total of 9 bends.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 30 of 36

 Problem 10: Taxi Time
 14 Point(s)

 Problem ID: taxi

 Rank: 3

 Introduction

 At your new startup Linear.ly, you have decided to disrupt the transportation industry with your

 revolutionary app idea—it gives users a rundown of the all cheapest ride options in their city!

 Lucky for you, most ride options follow a linear model: they first charge you a flat drop rate,

 and the fare increases at a constant rate from there. Your team has already given you the ability

 to access all transportation options in any city—it’s up to you to finish the rest!

 Problem Statement

 Your task is to create a program that will output the name of the cheapest ride option in a given

 city for all possible integer distances given N taxis in the area with drop rates B 1 , B 2 , ... , B N

 and mileage rates M 1 , M 2 , ... , M N . If multiple taxis share the same cheapest cost at a given

 distance, output the one with the lowest mileage rate.

 Input Format

 The first line of the input contains a positive integer T denoting the number of test cases that

 follow. For each test case:

 ● The first line consists of a city name and a positive integer N denoting the number of taxis

 that follow.

 ● The next N lines each consist of three space-separated values s i B i M i :
 ○ The string s i denotes the name of taxi i
 ○ The non-negative integer B i denotes the drop rate (flat starting fee) of taxi i in dollars.

 ○ The non-negative integer M i denotes the mileage rate of taxi i in dollars per mile.

 ● The final line is blank to separate individual test cases.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 31 of 36

 Output Format

 For each test case, your program should output the cheapest ride option in a given city for all

 possible distances in the following format:

 <CITY NAME>:
 <DISTANCE RANGE>: <NAME>
 <DISTANCE RANGE>: <NAME>
 <...>
 <DISTANCE>+: <NAME>

 ● Each distance range should consist of non-negative integer mile distances for which a

 given ride option is the cheapest. The ranges may consist of the following:

 ○ A distance range consisting of two mile distances separated by a dash - , representing

 the minimum and maximum distances X 1 X 2 for which a given listing is the cheapest

 option.

 ○ A single distance value X , for which a given listing is the cheapest option.

 ○ An open-ended distance range consisting of a single distance value X followed by a

 plus symbol + , representing all values above a minimum distance for which a given

 listing is the cheapest option.

 Problem Constraints

 1 ≤ T ≤ 10 3

 1 ≤ N ≤ 100

 1 ≤ B 1..N , M 1..N ≤ 10 4

 0 ≤ X i ≤ 10 6 for all i
 All names will be non-empty.

 The length of all names will not exceed 100.

 All names will only consist of lowercase letters, numbers, and underscores.

 All ride options will have different names.

 No two taxis will share the same drop rate and mileage rate.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 32 of 36

 Sample Test Cases

 Sample Input:

 4
 rio_de_janeiro 3
 yellow_cab 12 237
 blue_transit 1626 84
 smart_car 799 100

 palo_alto 1
 uber 510 137

 berkeley 4
 red_bus 0 1611
 green_bus 0 1610
 blue_bus 123 456
 yellow_bus 2034 455

 hangzhou 3
 fly_taxicab 1134 211
 premium_cab 753 211
 blue_line 2649 0

 Sample Output:

 rio_de_janeiro:
 0-5: yellow_cab
 6-51: smart_car
 52+: blue_transit

 palo_alto:
 0+: uber

 berkeley:
 0: green_bus
 1-1910: blue_bus
 1911+: yellow_bus

 hangzhou:
 0-8: premium_cab
 9+: blue_line

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 33 of 36

 Problem 11: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!0
 20 Point(s)

 Problem ID: truths

 Rank: 4

 Introduction

 Ben Bitdiddle has given up on learning the rules of boolean algebra! Instead, he decides to just

 straight up memorize ALL the true boolean expressions. You try to convince him that this idea

 is ridiculous, as the number of equations to memorize will grow exponentially with size, but he

 doesn’t believe you! To convince him, you must find some evidence to show how absurdly

 large a task he has set for himself.

 Problem Statement

 Count the number of true boolean expressions that use exactly N symbols modulo 10 9 + 7

 (1000000007).

 Boolean expressions are strings composed of only the following characters: 01!&|() , where 0

 and 1 are the boolean values for false and true, ! is the unary prefix NOT operator, & is the

 binary infix AND operator, | is the binary infix OR operator, and the parentheses () are used to

 further specify evaluating order.

 A boolean expression is true if and only if it is valid and evaluates to 1 . When evaluating, the

 standard order of operations should be respected: () , then ! , then & and finally | .

 Since the number of boolean expressions can be large, output your answer modulo 10 9 + 7.

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 34 of 36

https://en.wikipedia.org/wiki/Boolean_algebra#Basic_operations

 Input Format

 The first line of the input contains a positive integer T denoting the number of test cases that

 follow. Each test case is described in a single line containing a single integer N denoting the

 number of symbols for the number of expressions you want to count.

 Output Format

 For each test case, output a single line containing the number of true boolean expressions that

 use exactly N symbols modulo 10 9 + 7 (1000000007).

 Constraints

 1 ≤ T ≤ 100

 1 ≤ N ≤ 250

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 35 of 36

 Sample Test Cases

 Sample Input

 5
 1
 2
 3
 4
 5

 Sample Output

 1
 1
 6
 11
 47

 Sample Explanations

 For test case #1, there is exactly 1 true boolean expression with length 1: 1

 For test case #2, there is exactly 1 true boolean expression with length 2: !0

 For test case #3, there are 12 valid boolean expressions with length 3, of which 7 are also true.

 They are:

 0|1 1&1 1|0 1|1 !!1 (1)

 For test case #4, there are 22 valid boolean expressions with length 4, of which 11 are also

 true. They are:

 0|!0 1&!0 1|!0 1|!1 !0&1 !0|0
 !0|1 !1|1 !!!0 !(0) (!0)

 For test case #5, there are 90 valid boolean expressions with length 5, of which 47 are also

 true. They are:

 0&0|1 0&1|1 0|0|1 0|1&1 0|1|0 0|1|1
 0|!!1 0|(1) 1&0|1 1&1&1 1&1|0 1&1|1
 1&!!1 1&(1) 1|0&0 1|0&1 1|0|0 1|0|1
 1|1&0 1|1&1 1|1|0 1|1|1 1|!!0 1|!!1
 1|(0) 1|(1) !0&!0 !0|!0 !0|!1 !1|!0
 !!0|1 !!1&1 !!1|0 !!1|1 !!!!1 !!(1)
 !(!1) (0|1) (0)|1 (1&1) (1|0) (1|1)
 (1)&1 (1)|0 (1)|1 (!!1) ((1))

 © 2022 California Informatics Competition
 CALICO Spring '22 Online

 Page 36 of 36

