Problem 6: Fractals Against Programmability 7 Point(s)

Problem ID: fractal Rank: 2

Introduction

It turns out that building a real house of cards with real cards bought with real money is too expensive, and building a plain digital house of cards is not very impressive, so you decide to build a digital house of cards that's cool and recursive instead!

Problem Statement

Output a fractal house of cards with $\ensuremath{\mathbf{N}}$ layers.

The simplest fractal house of cards with 1 layer consists of just two cards leaning on each other in a single line, drawn with a forward slash / and a backslash $\:$

 $/ \setminus$

To construct a fractal house of cards with k layers where k is a power of 2, build three fractal houses of cards with k / 2 layers in an equilateral triangle pattern by inserting spaces so that each house is aligned correctly. For example, here is a fractal house of cards with 8 layers:

See the sample test cases below for more examples.

Input Format

The first line of input contains a positive integer \mathbf{T} denoting the number of test cases that follow. Each test case consists of a single line containing a positive integer \mathbf{N} denoting the number of layers in the fractal house of cards you're trying to build.

Output Format

For each test case, output the following:

- The first ${\bf N}$ lines should contain the fractal house of cards
 - $\circ~$ Each line should contain the forward slashes /, backslashes \, and spaces for each layer
 - The house is allowed to have trailing spaces on the right side of each layer
- The final line should be blank to separate individual test cases

Problem Constraints

$$\label{eq:constraint} \begin{split} &1\leq T\leq 100\\ &1\leq N\leq 256\\ &\mathbf{N} \text{ is a power of 2.}\\ &\text{The sum of } \mathbf{N}^2 \text{ across all test cases in an input does not exceed } 10^5. \end{split}$$

Sample Test Cases

Sample Input

Sample Output

- 5 1 2 4 8
- 16

 $/ \setminus$ /\ /\/\ / $/ \setminus / \setminus$ $/ \rangle / \rangle$ $/ \rangle / \rangle / \rangle / \rangle$ / $/ \setminus / \setminus$ $/ \rangle / \rangle$ $/ \rangle / \rangle / \rangle / \rangle$ // $/ \setminus / \setminus$ $/ \setminus / \setminus$ $/ \ / \ / \ / \ / \$ /\/\/\/\/\/\/ / $/ \setminus / \setminus$ $/ \ /$ $/ \rangle / \rangle / \rangle / \rangle$ $/ \setminus$ / $/ \setminus / \setminus$ $/ \rangle / \rangle$ $/ \ / \ / \ / \ / \$ /\/\/\/\/\/\/ // $/ \setminus / \setminus$ $/ \setminus / \setminus$ $/ \ / \$ $/ \ / \$ $/ \rangle / \rangle / \rangle / \rangle$ $/ \setminus / \setminus / \setminus / \setminus$ /\ /\ // $/ \setminus / \setminus$ $/ \setminus / \setminus$ $/ \setminus / \setminus$ $/ \setminus / \setminus$