Problem 3: Not Quite Fibonacci 3+2 Points

Problem ID: trib Rank: 1+2

Introduction

While listening to Mr. Recursion talk about Fibonacci numbers for the 11235813213455th time, you decided to invent a number sequence of your own! Beginning with -1, 0, and 1, you determine the next number by summing the previous *three* numbers in the sequence instead of the previous two. These are the *Tribonacci* numbers!

Problem Statement

Find the \mathbf{N}^{th} Tribonacci number, T_N .

The -1st, 0th, and 1st Tribonacci numbers are defined to be -1, 0, and 1 respectively. All Tribonacci numbers are equal to the sum of the three Tribonacci numbers before it. In other words:

 $T_{-1} = -1, T_{o} = 0, T_{1} = 1$ $T_{K} = T_{K-1} + T_{K-2} + T_{K-3}$ where K can be any integer

The first few Tribonacci numbers are as follows:

<i>T</i> ₋₁	T_o	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_{9}
-1	0	1	0	1	2	3	6	11	20	37

Input Format

The first line of the input contains a positive integer **T** denoting the number of test cases that follow. Each test case is described in a single line containing an integer **N** denoting the Tribonacci number you must find, T_N .

Output Format

For each test case, output a single line containing an integer denoting the N^{th} Tribonacci number, T_N .

Problem Constraints

 $1 \le T \le 100$

abs(T_i), the absolute value of the *i*th Tribonacci number, is guaranteed to be less than 10⁹ for all values of -60 \leq i \leq 30.

Main Test Set

 $0 \leq \mathbf{N} \leq 30$

Bonus Test Set

 $-60 \le \mathbf{N} \le 30$

To find Tribonacci numbers of negative N, algebraically rearrange the formula to solve for T_{K-3} .

Sample Test Cases

Sample Input

Sample Output

0
0
Ţ
0
3
68
2145012
2145013

Sample Explanations

For test cases #1 and #2, this is because the 0th and 1st Tribonacci numbers are defined to be 0 and 1 respectively.

For test case #3, using the formula with K = 2, we have $T_2 = T_1 + T_0 + T_{-1} = 1 + 0 + -1 = 0$

For test case #4, using the formula with K = 5, we have $T_5 = T_4 + T_3 + T_2 = 2 + 1 + 0 = 3$

For test case #5, using the formula with K = 10. we have $T_{10} = T_9 + T_8 + T_7 = 37 + 20 + 11 = 68$

Sample Input Sample Output 4 2 -2 -1 -3 -2 -4 -3792150 -50 -3792150

Sample Explanations

Negative Tribonacci numbers are found by rearranging the Tribonacci formula to solve for T_{K-3} . Note that negative **N** values will only appear in the bonus test set.