Problem 10: Big Boris the CALICOsmonaut 13 Points

Problem ID: vector Rank: 4

Introduction

Blyat! It's 1991 and the CCCP (CALICO Coding Competition Polity) has collapsed! The imperialist forces of the **USA**CO empire have taken over the entire world, sending it into turmoil and destroying all open-source software. While this happens, Big Boris the CALICOsmonaut is stranded on the *Bir*, the world's first interstellar space station. Determined to create a safe haven for coders across the universe, he primes his engines and sets out for open space. Boris however is not a skilled navigator, due to the lack of dexterity of his clubby paws he can only adjust a continuous range of engine throttles, and having eaten all but two of his boost modulators, he needs your help to manually navigate his ship to new horizons.

Problem Statement

You're given an array of N integers $a_1, a_2, \dots a_N$. Initially, these are assigned values $S_1, S_2, \dots S_N$.

You're then given a sequence of ${\bf Q}$ queries that your program must respond to. There are two types of queries:

- Update
 - Given L_i, R_i, and V_i, update a₁, a₂, ... a_N by adding V_i to each value in the range of the indices [L_i, R_i], inclusive.
- Find
 - Find the minimum possible sum of some integer array $b_1, b_2, ..., b_N$ such that there exists positive integers k, x_1, x_2 satisfying: $b_1 x_1 = a_1$ for all $1 \le i \le k$

$$b_i x_i = a_i$$
 for all $k + 1 \le j \le \mathbf{N}$

Input Format

The first line of input contains a single integer N denoting the length of the array. The second line of input contains N space-separated integers $S_1 S_2 \dots S_N$ denoting the initial values of the array.

The third line of input contains a single integer Q denoting the number of queries that follow. Each query is described in a single line:

- If the *i*th query is an *Update* query, the line contains UPDATE L_i R_i V_i separated by spaces where:
 - UPDATE is a string literal.
 - \mathbf{L}_i and \mathbf{R}_i denote the range of indices to perform the update.
 - V_i denotes the value to add.
- If the i^{th} query is a Find query, the line contains only the string FIND

Output Format

For each Find query, output a single line containing an integer denoting the sum of b

Constraints

Time limit: **1 second** Memory limit: **256 MB**

 $2 \le N \le 10^5$ $0 \le S_i \le 10^9$ $1 \le Q \le 10^4$ $0 \le V_i \le 10^9$ $1 \le L \le R \le N$ It is guaranteed that the number of *Find* queries in a test file will not exceed 2500. Note: There is a lot of input/output for this problem, so **fast I/O may be required**.

Sample Test Cases

Sample Input	Download	Sample Output	Download
5 10 5 15 0 3 6		7 11 5	
FIND UPDATE 3 4 3 FIND UPDATE 4 5 15 UPDATE 2 2 5 FIND			

Sample Explanation

The array has a length of N = 5. Initially, the values given by $S_1 S_2 \dots S_N$ are shown below:

i	1	2	3	4	5
a_i	10	5	15	0	3

There are $\mathbf{Q} = 6$ queries in total.

The first query is a	Find querv. Le	et's illustrate the	solution us	ing this table:

i	1	2	3	4	5
b_i	2	1	3	0	1
<i>x</i> ₁	5	5	5	5	-
<i>x</i> ₂	-	-	-	-	3
a _i	10	5	15	0	3

The total sum of the b_i in this case is 7. It can be proved that this is the minimum solution.

The second query is an Update query that updates a by adding V_i = 3 to all values with indic	es
$[\mathbf{L}_{i} = 3, \mathbf{R}_{i} = 4]$ which includes a_{3} and a_{4} .	

i	1	2	3	4	5
a_i (old)	10	5	15	0	3
Vi	-	-	3	3	-
a_i (new)	10	5	18	3	3

i	1	2	3	4	5
b_i	2	1	6	1	1
<i>x</i> ₁	5	5	-	-	-
<i>x</i> ₂	-	-	3	3	3
a _i	10	5	18	3	3

The third query is a *Find* query. Once again, let's illustrate the solution using another table:

The total sum of the b_i in this case is 11. It can be proved that this is the minimum solution.

The fourth query is an *Update* query, which adds 15 to a_4 and a_5 .

The fifth query is an *Update* query too, which adds 5 to a_2 . After both operations, the resulting array *a* is [10, 10, 18, 18, 18].

i	1	2	3	4	5
b_i	1	1	1	1	1
<i>x</i> ₁	10	10	-	-	-
<i>X</i> ₂	-	-	18	18	18
a _i	10	10	18	18	18

The last query is another Find query:

The total sum of the b_i in this case is 5. It can be proved that this is the minimum solution.